Search results
Results from the WOW.Com Content Network
For the case when the Boolean function is specified by a circuit (that is, we want to find an equivalent circuit of minimum size possible), the unbounded circuit minimization problem was long-conjectured to be -complete in time complexity, a result finally proved in 2008, [4] but there are effective heuristics such as Karnaugh maps and the ...
The Quine–McCluskey algorithm (QMC), also known as the method of prime implicants, is a method used for minimization of Boolean functions that was developed by Willard V. Quine in 1952 [1] [2] and extended by Edward J. McCluskey in 1956. [3]
For implementing a function in multi-level logic, the minimization result is optimized by factorization and mapped onto the available basic logic cells in the target technology, whether this concerns a field-programmable gate array (FPGA) or an application-specific integrated circuit (ASIC).
A pseudo-Boolean function: {,} is said to be representable if there exists a graph = (,) with non-negative weights and with source and sink nodes and respectively, and there exists a set of nodes = {, …,} {,} such that, for each tuple of values (, …,) {,} assigned to the variables, (, …,) equals (up to a constant) the value of the flow determined by a minimum cut = (,) of the graph such ...
The following is the skeleton of a generic branch and bound algorithm for minimizing an arbitrary objective function f. [3] To obtain an actual algorithm from this, one requires a bounding function bound, that computes lower bounds of f on nodes of the search tree, as well as a problem-specific branching rule.
Examples of don't-care terms are the binary values 1010 through 1111 (10 through 15 in decimal) for a function that takes a binary-coded decimal (BCD) value, because a BCD value never takes on such values (so called pseudo-tetrades); in the pictures, the circuit computing the lower left bar of a 7-segment display can be minimized to a b + a c by an appropriate choice of circuit outputs for ...
A Boolean function with multiple outputs, : {,} {,} with > is a vectorial or vector-valued Boolean function (an S-box in symmetric cryptography). [ 6 ] There are 2 2 k {\displaystyle 2^{2^{k}}} different Boolean functions with k {\displaystyle k} arguments; equal to the number of different truth tables with 2 k {\displaystyle 2^{k}} entries.
Boolean minimization Quine–McCluskey algorithm: also called as Q-M algorithm, programmable method for simplifying the Boolean equations; Petrick's method: another algorithm for Boolean simplification; Espresso heuristic logic minimizer: a fast algorithm for Boolean function minimization