enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum dot - Wikipedia

    en.wikipedia.org/wiki/Quantum_dot

    The color of that light depends on the energy difference between the discrete energy levels of the quantum dot in the conduction band and the valence band. [1] Nanoscale semiconductor materials tightly confine either electrons or electron holes. The confinement is similar to a three-dimensional particle in a box model.

  3. Zeeman effect - Wikipedia

    en.wikipedia.org/wiki/Zeeman_effect

    The Paschen–Back effect is the splitting of atomic energy levels in the presence of a strong magnetic field. This occurs when an external magnetic field is sufficiently strong to disrupt the coupling between orbital ( L → {\displaystyle {\vec {L}}} ) and spin ( S → {\displaystyle {\vec {S}}} ) angular momenta.

  4. Silicon quantum dot - Wikipedia

    en.wikipedia.org/wiki/Silicon_quantum_dot

    Silicon quantum dots are metal-free biologically compatible quantum dots with photoluminescence emission maxima that are tunable through the visible to near-infrared spectral regions. These quantum dots have unique properties arising from their indirect band gap , including long-lived luminescent excited-states and large Stokes shifts .

  5. Single-electron transistor - Wikipedia

    en.wikipedia.org/wiki/Single-electron_transistor

    In the blocking state all lower energy levels are occupied at the QD and no unoccupied level is within tunnelling range of electrons originating from the source (green 1.). When an electron arrives at the QD (2.) in the non-blocking state it will fill the lowest available vacant energy level, which will raise the energy barrier of the QD ...

  6. Quantum dot single-photon source - Wikipedia

    en.wikipedia.org/wiki/Quantum_dot_single-photon...

    Since a quantum dot has discrete energy levels, it can be achieved that there is never more than one exciton in the quantum dot simultaneously. Therefore, the quantum dot is an emitter of single photons. A key challenge in making a good single-photon source is to make sure that the emission from the quantum dot is collected efficiently.

  7. Quantum well - Wikipedia

    en.wikipedia.org/wiki/Quantum_well

    Quantum wells transmit electrons of any energy above a certain level, while quantum dots pass only electrons of a specific energy. [ 10 ] One possible application is to convert waste heat from electric circuits, e.g., in computer chips, back into electricity, reducing the need for cooling and energy to power the chip.

  8. Quantum dot cellular automaton - Wikipedia

    en.wikipedia.org/wiki/Quantum_dot_cellular_automaton

    Figure 2 shows a simplified diagram of a quantum-dot cell. [1] If the cell is charged with two electrons, each free to tunnel to any site in the cell, these electrons will try to occupy the furthest possible site with respect to each other due to mutual electrostatic repulsion .

  9. Energy level splitting - Wikipedia

    en.wikipedia.org/wiki/Energy_level_splitting

    In quantum physics, energy level splitting or a split in an energy level of a quantum system occurs when a perturbation changes the system. The perturbation changes the corresponding Hamiltonian and the outcome is change in eigenvalues ; several distinct energy levels emerge in place of the former degenerate (multi- state ) level.