enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Von Neumann–Bernays–Gödel set theory - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann–Bernays...

    Bound variables within nested quantifiers are handled by increasing the subscript by one for each successive quantifier. This leads to rule 4, which must be applied after the other rules since rules 1 and 2 produce quantified variables.

  3. Quantifier (logic) - Wikipedia

    en.wikipedia.org/wiki/Quantifier_(logic)

    In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula.For instance, the universal quantifier in the first order formula () expresses that everything in the domain satisfies the property denoted by .

  4. Predicate functor logic - Wikipedia

    en.wikipedia.org/wiki/Predicate_functor_logic

    Translate the matrices of the most deeply nested quantifiers into disjunctive normal form, consisting of disjuncts of conjuncts of terms, negating atomic terms as required. The resulting subformula contains only negation, conjunction, disjunction, and existential quantification.

  5. Glossary of logic - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_logic

    A quantifier that operates within a specific domain or set, as opposed to an unbounded or universal quantifier that applies to all elements of a particular type. branching quantifier A type of quantifier in formal logic that allows for the expression of dependencies between different quantified variables, representing more complex relationships ...

  6. Higher-order logic - Wikipedia

    en.wikipedia.org/wiki/Higher-order_logic

    In mathematics and logic, a higher-order logic (abbreviated HOL) is a form of logic that is distinguished from first-order logic by additional quantifiers and, sometimes, stronger semantics. Higher-order logics with their standard semantics are more expressive, but their model-theoretic properties are less well-behaved than those of first-order ...

  7. Method of analytic tableaux - Wikipedia

    en.wikipedia.org/wiki/Method_of_analytic_tableaux

    A graphical representation of a partially built propositional tableau. In proof theory, the semantic tableau [1] (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux), also called an analytic tableau, [2] truth tree, [1] or simply tree, [2] is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. [1]

  8. Modal logic - Wikipedia

    en.wikipedia.org/wiki/Modal_logic

    Modal logic is a kind of logic used to represent statements about necessity and possibility.It plays a major role in philosophy and related fields as a tool for understanding concepts such as knowledge, obligation, and causation.

  9. Existential quantification - Wikipedia

    en.wikipedia.org/wiki/Existential_quantification

    It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃x" or "∃(x)" or "(∃x)" [1]). Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for all members of the domain.