Search results
Results from the WOW.Com Content Network
The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.
Moments of inertia may be expressed in units of kilogram metre squared (kg·m 2) in SI units and pound-foot-second squared (lbf·ft·s 2) in imperial or US units. The moment of inertia plays the role in rotational kinetics that mass (inertia) plays in linear kinetics—both characterize the resistance of a body to changes in its motion. The ...
The parallel axis theorem, also known as Huygens–Steiner theorem, or just as Steiner's theorem, [1] named after Christiaan Huygens and Jakob Steiner, can be used to determine the moment of inertia or the second moment of area of a rigid body about any axis, given the body's moment of inertia about a parallel axis through the object's center of gravity and the perpendicular distance between ...
The moment of inertia of an object, symbolized by , is a measure of the object's resistance to changes to its rotation. The moment of inertia is measured in kilogram metre² (kg m 2). It depends on the object's mass: increasing the mass of an object increases the moment of inertia.
The second polar moment of area, also known (incorrectly, colloquially) as "polar moment of inertia" or even "moment of inertia", is a quantity used to describe resistance to torsional deformation (), in objects (or segments of an object) with an invariant cross-section and no significant warping or out-of-plane deformation. [1]
For a spheroid having uniform density, the moment of inertia is that of an ellipsoid with an additional axis of symmetry. Given a description of a spheroid as having a major axis c, and minor axes a = b, the moments of inertia along these principal axes are C, A, and B. However, in a spheroid the minor axes are symmetrical.
where C is the first principal moment of inertia of the body, M is the mass of the body, and R is the mean radius of the body. [1] [2] For a sphere with uniform density, / = /. [note 1] [note 2] For a differentiated planet or satellite, where there is an increase of density with depth, / < /.
The motion is simplified in the case of an axisymmetric body, in which the moment of inertia is the same about two of the principal axes. These cases include rotation of a prolate spheroid (the shape of an American football), or rotation of an oblate spheroid (the shape of a flattened sphere). In this case, the angular velocity describes a cone ...