Search results
Results from the WOW.Com Content Network
These operations and associated laws qualify Euclidean vectors as an example of the more generalized concept of vectors defined simply as elements of a vector space. Vectors play an important role in physics: the velocity and acceleration of a moving object and the forces acting on it can all be described with vectors. [7]
In physics, as well as mathematics, a vector is often identified with a tuple of components, or list of numbers, that act as scalar coefficients for a set of basis vectors. When the basis is transformed, for example by rotation or stretching, then the components of any vector in terms of that basis also transform in an opposite sense.
The definition of a tensor as a multidimensional array satisfying a transformation law traces back to the work of Ricci. [1] An equivalent definition of a tensor uses the representations of the general linear group. There is an action of the general linear group on the set of all ordered bases of an n-dimensional vector space.
In mathematics and physics, vector notation is a commonly used notation for representing vectors, [1] [2] which may be Euclidean vectors, or more generally, members of a vector space. For denoting a vector, the common typographic convention is lower case, upright boldface type, as in v .
If each component of V is continuous, then V is a continuous vector field. It is common to focus on smooth vector fields, meaning that each component is a smooth function (differentiable any number of times). A vector field can be visualized as assigning a vector to individual points within an n-dimensional space. [1]
Likewise, vectors whose components are contravariant push forward under smooth mappings, so the operation assigning the space of (contravariant) vectors to a smooth manifold is a covariant functor. Secondly, in the classical approach to differential geometry, it is not bases of the tangent bundle that are the most primitive object, but rather ...
The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .
In physics and engineering, particularly in mechanics, a physical vector may be endowed with additional structure compared to a geometrical vector. [3] A bound vector is defined as the combination of an ordinary vector quantity and a point of application or point of action.