enow.com Web Search

  1. Ad

    related to: generalization of a triangle practice questions and solutions 5th
  2. education.com has been visited by 100K+ users in the past month

    It’s an amazing resource for teachers & homeschoolers - Teaching Mama

    • Education.com Blog

      See what's new on Education.com,

      explore classroom ideas, & more.

    • Lesson Plans

      Engage your students with our

      detailed lesson plans for K-8.

Search results

  1. Results from the WOW.Com Content Network
  2. No-three-in-line problem - Wikipedia

    en.wikipedia.org/wiki/No-three-in-line_problem

    This application was the motivation for Paul Erdős to find his solution for the no-three-in-line problem. [13] It remained the best area lower bound known for the Heilbronn triangle problem from 1951 until 1982, when it was improved by a logarithmic factor using a construction that was not based on the no-three-in-line problem. [14]

  3. Simplex - Wikipedia

    en.wikipedia.org/wiki/Simplex

    In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example, a 0-dimensional simplex is a point, a 1-dimensional simplex is a line segment,

  4. Ceva's theorem - Wikipedia

    en.wikipedia.org/wiki/Ceva's_theorem

    In Euclidean geometry, Ceva's theorem is a theorem about triangles. Given a triangle ABC, let the lines AO, BO, CO be drawn from the vertices to a common point O (not on one of the sides of ABC), to meet opposite sides at D, E, F respectively. (The segments AD, BE, CF are known as cevians.) Then, using signed lengths of segments,

  5. Droz-Farny line theorem - Wikipedia

    en.wikipedia.org/wiki/Droz-Farny_line_theorem

    Second generalization: Let a conic S and a point P on the plane. Construct three lines d a , d b , d c through P such that they meet the conic at A, A'; B, B' ; C, C' respectively. Let D be a point on the polar of point P with respect to (S) or D lies on the conic (S).

  6. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Generalization for arbitrary triangles, green area = blue area Construction for proof of parallelogram generalization. Pappus's area theorem is a further generalization, that applies to triangles that are not right triangles, using parallelograms on the three sides in place of squares (squares are a special case, of course). The upper figure ...

  7. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    Langley's Adventitious Angles Solution to Langley's 80-80-20 triangle problem. Langley's Adventitious Angles is a puzzle in which one must infer an angle in a geometric diagram from other given angles. It was posed by Edward Mann Langley in The Mathematical Gazette in 1922. [1] [2]

  8. The best gifts to buy your grandkids — from babies to big ...

    www.aol.com/lifestyle/the-best-gifts-to-buy-your...

    Fisher-Price Wooden Activity Triangle. $20 at Walmart. Fisher-Price Busy Buddies Pop-Up . $17 at Walmart. Fisher-Price Laugh and Learn Mix & Learn DJ Activity Table. $31 at Walmart. For Toddlers.

  9. Steiner tree problem - Wikipedia

    en.wikipedia.org/wiki/Steiner_tree_problem

    For general N, the Euclidean Steiner tree problem is NP-hard, and hence it is not known whether an optimal solution can be found by using a polynomial-time algorithm. However, there is a polynomial-time approximation scheme (PTAS) for Euclidean Steiner trees, i.e., a near-optimal solution can be found in polynomial time. [5]

  1. Ad

    related to: generalization of a triangle practice questions and solutions 5th