Search results
Results from the WOW.Com Content Network
In assembly, C, C++, Pascal, Modula2 and other languages, a callback function is stored internally as a function pointer. Using the same storage allows different languages to directly share callbacks without a design-time or runtime interoperability layer. For example, the Windows API is accessible via multiple languages, compilers and assemblers.
Another way to create a function object in C++ is to define a non-explicit conversion function to a function pointer type, a function reference type, or a reference to function pointer type. Assuming the conversion does not discard cv-qualifiers , this allows an object of that type to be used as a function with the same signature as the type it ...
The C and C++ syntax given above is the canonical one used in all the textbooks - but it's difficult to read and explain. Even the above typedef examples use this syntax. However, every C and C++ compiler supports a more clear and concise mechanism to declare function pointers: use typedef, but don't store
This function requires C++ – would not compile as C. It has the same behavior as the preceding example but passes the actual parameter by reference rather than passing its address. A call such as addTwo(v) does not include an ampersand since the compiler handles passing by reference without syntax in the call.
The reference to the object is passed as a hidden argument, usually accessible from within the method as this. A parameter called by reference is syntactic sugar for technically passing a pointer as the parameter, but syntactically handling it as the variable itself, to avoid constant pointer de-referencing in the code inside the function.
The specification for pass-by-reference or pass-by-value would be made in the function declaration and/or definition. Parameters appear in procedure definitions; arguments appear in procedure calls. In the function definition f(x) = x*x the variable x is a parameter; in the function call f(2) the value 2 is the argument of the function. Loosely ...
For example ((call/cc f) e2) is equivalent to applying f to the current continuation of the expression. The current continuation is given by replacing (call/cc f) by a variable c bound by a lambda abstraction, so the current continuation is (lambda (c) (c e2)). Applying the function f to it gives the final result (f (lambda (c) (c e2))).
Lambda abstractions applied to a parameter have a dual interpretation as either a let expression defining a function, or as defining an anonymous function. Both interpretations are valid. These two predicates are needed for both definitions. lambda-free - An expression containing no lambda abstractions. {- [.