Search results
Results from the WOW.Com Content Network
Template: Least squares and regression analysis. 4 languages. ... Download as PDF; Printable version; In other projects Wikidata item; Appearance. move to sidebar hide
In statistics, nonlinear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables. The data are fitted by a method of successive approximations (iterations).
In addition, all the parameters of the distribution – location (e.g., mean), scale (e.g., variance) and shape (skewness and kurtosis) – can be modeled as linear, nonlinear or smooth functions of explanatory variables.
Nonlinear mixed-effects models are a special case of regression analysis for which a range of different software solutions are available. The statistical properties of nonlinear mixed-effects models make direct estimation by a BLUE estimator impossible. Nonlinear mixed effects models are therefore estimated according to Maximum Likelihood ...
Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations.
The function F is some nonlinear function, such as a polynomial. F can be a neural network, a wavelet network, a sigmoid network and so on. To test for non-linearity in a time series, the BDS test (Brock-Dechert-Scheinkman test) developed for econometrics can be used.
The figure on the right shows a plot of this function: a line giving the predicted ^ versus x, with the original values of y shown as red dots. The data at the extremes of x indicates that the relationship between y and x may be non-linear (look at the red dots relative to the regression line at low and high values of x). We thus turn to MARS ...
The primary application of the Levenberg–Marquardt algorithm is in the least-squares curve fitting problem: given a set of empirical pairs (,) of independent and dependent variables, find the parameters of the model curve (,) so that the sum of the squares of the deviations () is minimized: