Search results
Results from the WOW.Com Content Network
Relative uncertainty is the measurement uncertainty relative to the magnitude of a particular single choice for the value for the measured quantity, when this choice is nonzero. This particular single choice is usually called the measured value, which may be optimal in some well-defined sense (e.g., a mean, median, or mode). Thus, the relative ...
An example of a source of this uncertainty would be the drag in an experiment designed to measure the acceleration of gravity near the earth's surface. The commonly used gravitational acceleration of 9.8 m/s² ignores the effects of air resistance, but the air resistance for the object could be measured and incorporated into the experiment to ...
This can occur when using a logarithmic scale, for example. Uncertainty of a measurement can be determined by repeating a measurement to arrive at an estimate of the standard deviation of the values. Then, any single value has an uncertainty equal to the standard deviation.
For example, the 68% confidence limits for a one-dimensional variable belonging to a normal distribution are approximately ± one standard deviation σ from the central value x, which means that the region x ± σ will cover the true value in roughly 68% of cases. If the uncertainties are correlated then covariance must be taken into account ...
Measurement errors can be divided into two components: random and systematic. [2] Random errors are errors in measurement that lead to measurable values being inconsistent when repeated measurements of a constant attribute or quantity are taken. Random errors create measurement uncertainty.
For example, an experimental uncertainty analysis of an undergraduate physics lab experiment in which a pendulum can estimate the value of the local gravitational acceleration constant g. The relevant equation [ 1 ] for an idealized simple pendulum is, approximately,
The measurement uncertainty budget must be re-determined for each measured value. Examples. 1. A measured temperature value is read every day. Decisive influencing variables are ambient temperature and air pressure, which can vary every day. 2. The measurement uncertainty strongly depends on the size of the measured value itself, e.g. amplitude ...
An example of how is ... Standard errors provide simple measures of uncertainty in a value and are often used because: ... If values of the measured quantity A are ...