enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. [1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations .

  3. Stokes flow - Wikipedia

    en.wikipedia.org/wiki/Stokes_flow

    The equation of motion for Stokes flow can be obtained by linearizing the steady state Navier–Stokes equations.The inertial forces are assumed to be negligible in comparison to the viscous forces, and eliminating the inertial terms of the momentum balance in the Navier–Stokes equations reduces it to the momentum balance in the Stokes equations: [1]

  4. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    This is considered one of the simplest unsteady problems that has an exact solution for the Navier–Stokes equations. [1] [2] In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments, numerical simulations or approximate methods in order to obtain useful information on the flow.

  5. Cunningham correction factor - Wikipedia

    en.wikipedia.org/wiki/Cunningham_correction_factor

    The derivation of Stokes' law, which is used to calculate the drag force on small particles, assumes a no-slip condition which is no longer correct at high Knudsen numbers. The Cunningham slip correction factor allows predicting the drag force on a particle moving a fluid with Knudsen number between the continuum regime and free molecular flow.

  6. Stokes's law of sound attenuation - Wikipedia

    en.wikipedia.org/wiki/Stokes's_law_of_sound...

    In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...

  7. Stokes approximation and artificial time - Wikipedia

    en.wikipedia.org/wiki/Stokes_approximation_and...

    This solution will not depend upon the function . If this is used for the above equation consisting of Navier stokes equation and continuity equations with time derivative of pressure, then the solution will be same as the stationary solution of the original Navier Stoke problem. This process also introduce the new term artificial time as t→∞.

  8. Airy function - Wikipedia

    en.wikipedia.org/wiki/Airy_function

    The function Ai(x) and the related function Bi(x), are linearly independent solutions to the differential equation =, known as the Airy equation or the Stokes equation. Because the solution of the linear differential equation d 2 y d x 2 − k y = 0 {\displaystyle {\frac {d^{2}y}{dx^{2}}}-ky=0} is oscillatory for k <0 and exponential for k >0 ...

  9. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    This equation is called the mass continuity equation, or simply the continuity equation. This equation generally accompanies the Navier–Stokes equation. In the case of an incompressible fluid, ⁠ Dρ / Dt ⁠ = 0 (the density following the path of a fluid element is constant) and the equation reduces to: