Ads
related to: single variable calculus online textbook
Search results
Results from the WOW.Com Content Network
Calculus Made Easy ignores the use of limits with its epsilon-delta definition, replacing it with a method of approximating (to arbitrary precision) directly to the correct answer in the infinitesimal spirit of Leibniz, now formally justified in modern nonstandard analysis and smooth infinitesimal analysis.
Calculus BC is a full-year course in the calculus of functions of a single variable. It includes all topics covered in Calculus AB plus additional topics... Students who take an AP Calculus course should do so with the intention of placing out of a comparable college calculus course. [1]
Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus.
In single-variable calculus, we drop some information. We retain only the linear map, in the form of a scalar multiplying agent (i.e. a number). One way to justify this convention of retaining only the linear map aspect of the derivative is to appeal to the (very simple) Lie group structure of under addition.
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
In his 1821 book Cours d'analyse, Augustin-Louis Cauchy discussed variable quantities, infinitesimals and limits, and defined continuity of = by saying that an infinitesimal change in x necessarily produces an infinitesimal change in y, while Grabiner claims that he used a rigorous epsilon-delta definition in proofs. [2]
For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).
In differential calculus, there is no single uniform notation for differentiation. Instead, various notations for the derivative of a function or variable have been proposed by various mathematicians. The usefulness of each notation varies with the context, and it is sometimes advantageous to use more than one notation in a given context.
Ads
related to: single variable calculus online textbook