enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_equations

    The NavierStokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades ...

  3. Continuity equation - Wikipedia

    en.wikipedia.org/wiki/Continuity_equation

    The NavierStokes equations form a vector continuity equation describing the conservation of linear momentum. If the fluid is incompressible (volumetric strain rate is zero), the mass continuity equation simplifies to a volume continuity equation: [ 3 ] ∇ ⋅ u = 0 , {\displaystyle \nabla \cdot \mathbf {u} =0,} which means that the ...

  4. SIMPLE algorithm - Wikipedia

    en.wikipedia.org/wiki/SIMPLE_algorithm

    In computational fluid dynamics (CFD), the SIMPLE algorithm is a widely used numerical procedure to solve the NavierStokes equations. SIMPLE is an acronym for Semi-Implicit Method for Pressure Linked Equations. The SIMPLE algorithm was developed by Prof. Brian Spalding and his student Suhas Patankar at Imperial College London in the early ...

  5. Direct numerical simulation - Wikipedia

    en.wikipedia.org/wiki/Direct_numerical_simulation

    Also, direct numerical simulations are useful in the development of turbulence models for practical applications, such as sub-grid scale models for large eddy simulation (LES) and models for methods that solve the Reynolds-averaged NavierStokes equations (RANS). This is done by means of "a priori" tests, in which the input data for the model ...

  6. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    The NavierStokes equations are based on the assumption that the fluid, at the scale of interest, is a continuum – a continuous substance rather than discrete particles. Another necessary assumption is that all the fields of interest including pressure , flow velocity , density , and temperature are at least weakly differentiable .

  7. Primitive equations - Wikipedia

    en.wikipedia.org/wiki/Primitive_equations

    Conservation of momentum: Consisting of a form of the NavierStokes equations that describe hydrodynamical flow on the surface of a sphere under the assumption that vertical motion is much smaller than horizontal motion (hydrostasis) and that the fluid layer depth is small compared to the radius of the sphere

  8. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    This is considered one of the simplest unsteady problems that has an exact solution for the NavierStokes equations. [1] [2] In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments, numerical simulations or approximate methods in order to obtain useful information on the flow.

  9. Non-dimensionalization and scaling of the Navier–Stokes ...

    en.wikipedia.org/wiki/Non-dimensionalization_and...

    In fluid mechanics, non-dimensionalization of the NavierStokes equations is the conversion of the NavierStokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain ...