Search results
Results from the WOW.Com Content Network
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.
In probability theory and statistics, the Laplace distribution is a continuous probability distribution named after Pierre-Simon Laplace.It is also sometimes called the double exponential distribution, because it can be thought of as two exponential distributions (with an additional location parameter) spliced together along the abscissa, although the term is also sometimes used to refer to ...
The kernel can be understood as the derivative of the Green's function for the Laplace equation. It is named for Siméon Poisson. Poisson kernels commonly find applications in control theory and two-dimensional problems in electrostatics. In practice, the definition of Poisson kernels are often extended to n-dimensional problems.
In this equation, we used sup and inf instead of max and min because the graph (,) does not have to be locally finite (i.e., to have finite degrees): a key example is when () is the set of points in a domain in , and (,) if their Euclidean distance is at most . The importance of this example lies in the following.
The asymmetric Laplace distribution, including the special case of =, is an example of a geometric stable distribution. [3] It represents the limiting distribution for a sum of independent, identically distributed random variables with finite variance and covariance where the number of elements to be summed is itself an independent random ...
In mathematics and mathematical physics, potential theory is the study of harmonic functions.. The term "potential theory" was coined in 19th-century physics when it was realized that two fundamental forces of nature known at the time, namely gravity and the electrostatic force, could be modeled using functions called the gravitational potential and electrostatic potential, both of which ...
Solutions of the Laplace equation, i.e. functions whose Laplacian is identically zero, thus represent possible equilibrium densities under diffusion. The Laplace operator itself has a physical interpretation for non-equilibrium diffusion as the extent to which a point represents a source or sink of chemical concentration, in a sense made ...
In 1776, Laplace formulated a single set of linear partial differential equations, for tidal flow described as a barotropic two-dimensional sheet flow. Coriolis effects are introduced as well as lateral forcing by gravity. Laplace obtained these equations by simplifying the fluid dynamic equations.