enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    Solving applications dealing with non-uniform circular motion involves force analysis. With a uniform circular motion, the only force acting upon an object traveling in a circle is the centripetal force. In a non-uniform circular motion, there are additional forces acting on the object due to a non-zero tangential acceleration.

  3. Copernican Revolution - Wikipedia

    en.wikipedia.org/wiki/Copernican_Revolution

    Motion of Sun (yellow), Earth (blue), and Mars (red). At left, Copernicus' heliocentric motion. At right, traditional geocentric motion, including the retrograde motion of Mars. For simplicity, Mars' period of revolution is depicted as 2 years instead of 1.88, and orbits are depicted as perfectly circular or epitrochoid.

  4. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's cannonball is a thought experiment that interpolates between projectile motion and uniform circular motion. A cannonball that is lobbed weakly off the edge of a tall cliff will hit the ground in the same amount of time as if it were dropped from rest, because the force of gravity only affects the cannonball's momentum in the downward ...

  5. Gyroradius - Wikipedia

    en.wikipedia.org/wiki/Gyroradius

    It is often useful to give the gyrofrequency a sign with the definition = or express it in units of hertz with =. For electrons, this frequency can be reduced to , = (/).. In cgs-units the gyroradius = | | and the corresponding gyrofrequency = | | include a factor , that is the velocity of light, because the magnetic field is expressed in units [] = / /.

  6. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    Simple harmonic motion can be considered the one-dimensional projection of uniform circular motion. If an object moves with angular speed ω around a circle of radius r centered at the origin of the xy -plane, then its motion along each coordinate is simple harmonic motion with amplitude r and angular frequency ω .

  7. Scientific Revolution - Wikipedia

    en.wikipedia.org/wiki/Scientific_Revolution

    The celestial region was made up of the fifth element, aether, which was unchanging and moved naturally with uniform circular motion. [29] In the Aristotelian tradition, astronomical theories sought to explain the observed irregular motion of celestial objects through the combined effects of multiple uniform circular motions.

  8. Equant - Wikipedia

    en.wikipedia.org/wiki/Equant

    This can be seen as violating the axiom of uniform circular motion. Noted critics of the equant include the Persian astronomer Nasir al-Din Tusi who developed the Tusi couple as an alternative explanation, [10] and Nicolaus Copernicus, whose alternative was a new pair of small epicycles for each deferent. Dislike of the equant was a major ...

  9. Centripetal force - Wikipedia

    en.wikipedia.org/wiki/Centripetal_force

    These results agree with those above for nonuniform circular motion. See also the article on non-uniform circular motion. If this acceleration is multiplied by the particle mass, the leading term is the centripetal force and the negative of the second term related to angular acceleration is sometimes called the Euler force. [22]