Search results
Results from the WOW.Com Content Network
Changing orientation of a rigid body is the same as rotating the axes of a reference frame attached to it. In geometry, the orientation, attitude, bearing, direction, or angular position of an object – such as a line, plane or rigid body – is part of the description of how it is placed in the space it occupies. [1]
A Cartesian coordinate system in two dimensions (also called a rectangular coordinate system or an orthogonal coordinate system [8]) is defined by an ordered pair of perpendicular lines (axes), a single unit of length for both axes, and an orientation for each axis. The point where the axes meet is taken as the origin for both, thus turning ...
A coordinate line with all other constant coordinates equal to zero is called a coordinate axis, an oriented line used for assigning coordinates. In a Cartesian coordinate system , all coordinates curves are lines, and, therefore, there are as many coordinate axes as coordinates.
A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.
The Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a rigid body with respect to a fixed coordinate system. [1]They can also represent the orientation of a mobile frame of reference in physics or the orientation of a general basis in three dimensional linear algebra.
3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]
The one-dimensional case deals with an oriented line or directed line, which may be traversed in one of two directions. In real coordinate space , an oriented line is also known as an axis . [ 3 ] There are two orientations to a line just as there are two orientations to an oriented circle (clockwise and anti-clockwise).
A linear equation in line coordinates has the form al + bm + c = 0, where a, b and c are constants. Suppose (l, m) is a line that satisfies this equation.If c is not 0 then lx + my + 1 = 0, where x = a/c and y = b/c, so every line satisfying the original equation passes through the point (x, y).