enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Additive identity - Wikipedia

    en.wikipedia.org/wiki/Additive_identity

    In mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element x in the set, yields x.One of the most familiar additive identities is the number 0 from elementary mathematics, but additive identities occur in other mathematical structures where addition is defined, such as in groups and rings.

  3. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    The base case b = 0 follows immediately from the identity element property (0 is an additive identity), which has been proved above: a + 0 = a = 0 + a. Next we will prove the base case b = 1, that 1 commutes with everything, i.e. for all natural numbers a, we have a + 1 = 1 + a.

  4. Sigma-additive set function - Wikipedia

    en.wikipedia.org/wiki/Sigma-additive_set_function

    If this additivity property holds for any two sets, then it also holds for any finite number of sets, namely, the function value on the union of k disjoint sets (where k is a finite number) equals the sum of its values on the sets. Therefore, an additive set function is also called a finitely additive set function (the terms

  5. Addition - Wikipedia

    en.wikipedia.org/wiki/Addition

    Addition is commutative, meaning that one can change the order of the terms in a sum, but still get the same result. Symbolically, if a and b are any two numbers, then a + b = b + a. The fact that addition is commutative is known as the "commutative law of addition" or "commutative property of addition".

  6. Field (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Field_(mathematics)

    Informally, a field is a set, along with two operations defined on that set: an addition operation written as a + b, and a multiplication operation written as a ⋅ b, both of which behave similarly as they behave for rational numbers and real numbers, including the existence of an additive inverse −a for all elements a, and of a multiplicative inverse b −1 for every nonzero element b.

  7. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    The definition requires closure, that the additive element be found in . This is why despite addition being defined over the natural numbers, it does not an additive inverse for its members. The associated inverses would be negative numbers, which is why the integers do have an additive inverse.

  8. Additive function - Wikipedia

    en.wikipedia.org/wiki/Additive_function

    In number theory, an additive function is an arithmetic function f(n) of the positive integer variable n such that whenever a and b are coprime, the function applied to the product ab is the sum of the values of the function applied to a and b: [1] = + ().

  9. Subadditivity - Wikipedia

    en.wikipedia.org/wiki/Subadditivity

    Subadditivity is an essential property of some particular cost functions. It is, generally, a necessary and sufficient condition for the verification of a natural monopoly . It implies that production from only one firm is socially less expensive (in terms of average costs) than production of a fraction of the original quantity by an equal ...