enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dominance (genetics) - Wikipedia

    en.wikipedia.org/wiki/Dominance_(genetics)

    Autosomal dominant and autosomal recessive inheritance, the two most common Mendelian inheritance patterns. An autosome is any chromosome other than a sex chromosome.. In genetics, dominance is the phenomenon of one variant of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome.

  3. Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Mendelian_inheritance

    In a dominant-recessive inheritance, an average of 25% are homozygous with the dominant trait, 50% are heterozygous showing the dominant trait in the phenotype (genetic carriers), 25% are homozygous with the recessive trait and therefore express the recessive trait in the phenotype. The genotypic ratio is 1: 2 : 1, and the phenotypic ratio is 3: 1.

  4. Test cross - Wikipedia

    en.wikipedia.org/wiki/Test_cross

    Since the homozygous recessive individual can only pass on recessive alleles, the allele the individual in question passes on determines the phenotype of the offspring. [3] Thus, this test yields 2 possible situations: If any of the offspring produced express the recessive trait, the individual in question is heterozygous for the dominant ...

  5. Zygosity - Wikipedia

    en.wikipedia.org/wiki/Zygosity

    The words homozygous, heterozygous, and hemizygous are used to describe the genotype of a diploid organism at a single locus on the DNA. Homozygous describes a genotype consisting of two identical alleles at a given locus, heterozygous describes a genotype consisting of two different alleles at a locus, hemizygous describes a genotype consisting of only a single copy of a particular gene in an ...

  6. Obligate carrier - Wikipedia

    en.wikipedia.org/wiki/Obligate_carrier

    In X-linked recessive disorders, only females can be the carriers of the recessive mutation, making them obligate carriers of this type of disease. Females acquire one X-chromosome from their father and one from their mother, and this means they can either be heterozygous for the mutated allele or homozygous. If heterozygous, she is a carrier ...

  7. Monohybrid cross - Wikipedia

    en.wikipedia.org/wiki/Monohybrid_cross

    Figure 1: Inheritance pattern of dominant (red) and recessive (white) phenotypes when each parent (1) is homozygous for either the dominant or recessive trait. All members of the F 1 generation are heterozygous and share the same dominant phenotype (2), while the F 2 generation exhibits a 6:2 ratio of dominant to recessive phenotypes (3).

  8. Hereditary carrier - Wikipedia

    en.wikipedia.org/wiki/Hereditary_carrier

    In an individual which is heterozygous regarding a certain allele, it is not externally recognisable that it also has the recessive allele. But if the carrier has a child, the recessive trait appears in the phenotype, in case the descendant receives the recessive allele from both parents and therefore does not possess the dominant allele that ...

  9. Mendelian traits in humans - Wikipedia

    en.wikipedia.org/wiki/Mendelian_traits_in_humans

    Autosomal dominant A 50/50 chance of inheritance. Sickle-cell disease is inherited in the autosomal recessive pattern. When both parents have sickle-cell trait (carrier), a child has a 25% chance of sickle-cell disease (red icon), 25% do not carry any sickle-cell alleles (blue icon), and 50% have the heterozygous (carrier) condition. [1]