Search results
Results from the WOW.Com Content Network
As in other mammals, human thermoregulation is an important aspect of homeostasis. In thermoregulation, body heat is generated mostly in the deep organs, especially the liver, brain, and heart, and in contraction of skeletal muscles. [1] Humans have been able to adapt to a great diversity of climates, including hot humid and hot arid.
Origins of heat and cold adaptations can be explained by climatic adaptation. [16] [17] Ambient air temperature affects how much energy investment the human body must make. The temperature that requires the least amount of energy investment is 21 °C (70 °F). [5] [disputed – discuss] The body controls its temperature through the hypothalamus.
The specific heat of the human body calculated from the measured values of individual tissues is 2.98 kJ · kg−1 · °C−1. This is 17% lower than the earlier wider used one based on non measured values of 3.47 kJ · kg−1· °C−1.
Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when the surrounding temperature is very different. A thermoconforming organism, by contrast, simply adopts the surrounding temperature as its own body temperature, thus avoiding the need for internal thermoregulation.
In chemistry, heat amounts are often measured in calories. Confusingly, two units with that name, denoted "cal" or "Cal", have been commonly used to measure amounts of heat: The "small calorie" (or "gram-calorie", "cal") is exactly 4.184 J. It was originally defined so that the heat capacity of 1 gram of liquid water would be 1 cal/°C.
The term "thermal energy" is often used ambiguously in physics and engineering. [1] It can denote several different physical concepts, including: Internal energy: The energy contained within a body of matter or radiation, excluding the potential energy of the whole system, and excluding the kinetic energy of the system moving as a whole.
The operative temperature, which is a more functional measure of thermal comfort in a building, is calculated from air temperature, mean radiant temperature and air speed. [6] Maintaining a balance between the operative temperature and the mean radiant temperature can create a more comfortable space. [ 7 ]
The principles of heat transfer in engineering systems can be applied to the human body to determine how the body transfers heat. Heat is produced in the body by the continuous metabolism of nutrients which provides energy for the systems of the body. [43]