enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...

  3. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    Thus, the infimum or meet of a collection of subsets is the greatest lower bound while the supremum or join is the least upper bound. In this context, the inner limit, lim inf X n, is the largest meeting of tails of the sequence, and the outer limit, lim sup X n, is the smallest joining of tails of the sequence. The following makes this precise.

  4. Upper and lower bounds - Wikipedia

    en.wikipedia.org/wiki/Upper_and_lower_bounds

    An upper bound is said to be a tight upper bound, a least upper bound, or a supremum, if no smaller value is an upper bound. Similarly, a lower bound is said to be a tight lower bound, a greatest lower bound, or an infimum, if no greater value is a lower bound.

  5. Join and meet - Wikipedia

    en.wikipedia.org/wiki/Join_and_meet

    If (,) is a partially ordered set, such that each pair of elements in has a meet, then indeed = if and only if , since in the latter case indeed is a lower bound of , and since is the greatest lower bound if and only if it is a lower bound. Thus, the partial order defined by the meet in the universal algebra approach coincides with the original ...

  6. Lattice (order) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(order)

    A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).

  7. Completeness (order theory) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(order_theory)

    Other common names for the least element are bottom and zero (0). The dual notion, the empty lower bound, is the greatest element, top, or unit (1). Posets that have a bottom are sometimes called pointed, while posets with a top are called unital or topped. An order that has both a least and a greatest element is bounded.

  8. Semilattice - Wikipedia

    en.wikipedia.org/wiki/Semilattice

    For all elements x and y of S, the greatest lower bound of the set {x, y} exists. The greatest lower bound of the set {x, y} is called the meet of x and y, denoted x ∧ y. Replacing "greatest lower bound" with "least upper bound" results in the dual concept of a join-semilattice. The least upper bound of {x, y} is called the join of x and y ...

  9. Maximal and minimal elements - Wikipedia

    en.wikipedia.org/wiki/Maximal_and_minimal_elements

    In a directed set, every pair of elements (particularly pairs of incomparable elements) has a common upper bound within the set. If a directed set has a maximal element, it is also its greatest element, [proof 7] and hence its only maximal element. For a directed set without maximal or greatest elements, see examples 1 and 2 above.