enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Confidence and prediction bands - Wikipedia

    en.wikipedia.org/wiki/Confidence_and_prediction...

    Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.

  3. Bayesian experimental design - Wikipedia

    en.wikipedia.org/wiki/Bayesian_experimental_design

    The utility is most commonly defined in terms of a measure of the accuracy of the information provided by the experiment (e.g., the Shannon information or the negative of the variance) but may also involve factors such as the financial cost of performing the experiment. What will be the optimal experiment design depends on the particular ...

  4. Political forecasting - Wikipedia

    en.wikipedia.org/wiki/Political_forecasting

    Poll damping is when incorrect indicators of public opinion are not used in a forecast model. For instance, early in the campaign, polls are poor measures of the future choices of voters. The poll results closer to an election are a more accurate prediction. Campbell [6] shows the power of poll damping in political forecasting.

  5. Posterior predictive distribution - Wikipedia

    en.wikipedia.org/wiki/Posterior_predictive...

    In Bayesian statistics, the posterior predictive distribution is the distribution of possible unobserved values conditional on the observed values. [1] [2]Given a set of N i.i.d. observations = {, …,}, a new value ~ will be drawn from a distribution that depends on a parameter , where is the parameter space.

  6. Approximate Bayesian computation - Wikipedia

    en.wikipedia.org/wiki/Approximate_Bayesian...

    Step 5: The posterior distribution is approximated with the accepted parameter points. The posterior distribution should have a non-negligible probability for parameter values in a region around the true value of in the system if the data are sufficiently informative. In this example, the posterior probability mass is evenly split between the ...

  7. Bayesian statistics - Wikipedia

    en.wikipedia.org/wiki/Bayesian_statistics

    The inference process generates a posterior distribution, which has a central role in Bayesian statistics, together with other distributions like the posterior predictive distribution and the prior predictive distribution. The correct visualization, analysis, and interpretation of these distributions is key to properly answer the questions that ...

  8. Prediction interval - Wikipedia

    en.wikipedia.org/wiki/Prediction_interval

    Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".

  9. Predictive probability of success - Wikipedia

    en.wikipedia.org/wiki/Predictive_probability_of...

    Predictive power addresses this issue assuming the parameter has a specific distribution. Predictive power is a Bayesian power. A parameter in Bayesian setting is a random variable. Predictive power is a function of a parameter(s), therefore predictive power is also a variable.