Search results
Results from the WOW.Com Content Network
Cartesian y-axis basis unit vector unitless kinetic energy: joule (J) wave vector: radian per meter (m −1) Boltzmann constant: joule per kelvin (J/K) wavenumber: radian per meter (m −1) stiffness: newton per meter (N⋅m −1) ^ Cartesian z-axis basis unit vector
Heat capacity per unit mass J/(K⋅kg) L 2 T −2 Θ −1: intensive Specific volume: v: Volume per unit mass (reciprocal of density) m 3 ⋅kg −1: L 3 M −1: intensive Spin: S: Quantum-mechanically defined angular momentum of a particle kg⋅m 2 ⋅s −1: L 2 M T −1: Strain: ε: Extension per unit length unitless 1: Stress: σ: Force per ...
This new symbol can be raised to a positive or negative power. It can also be combined with other unit symbols to form compound unit symbols. [1]: 143 For example, g/cm 3 is an SI unit of density, where cm 3 is to be interpreted as (cm) 3. Prefixes are added to unit names to produce multiples and submultiples of the original unit. All of these ...
Symbol [1] Name of quantity Unit name Symbol Base units E energy: joule: J = C⋅V = W⋅s kg⋅m 2 ⋅s −2: Q electric charge: coulomb: C A⋅s I electric current: ampere
[8] [9] [10] The latter spelling is still listed in some dictionaries, [1] but is now rare in English texts. Some popular US dictionaries list only the spelling angstrom. [2] [3] The unit's symbol is Å, which is a letter of the Swedish alphabet, regardless of how the unit is spelled.
A physical quantity can be expressed as a value, which is the algebraic multiplication of a numerical value and a unit of measurement. For example, the physical quantity mass, symbol m, can be quantified as m=n kg, where n is the numerical value and kg is the unit symbol (for kilogram). Quantities that are vectors have, besides numerical value ...
The kelvin is defined by setting the fixed numerical value of the Boltzmann constant k to 1.380 649 × 10 −23 J⋅K −1, (J = kg⋅m 2 ⋅s −2), given the definition of the kilogram, the metre, and the second.
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...