enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Comparison of statistical packages - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_statistical...

    ROOT Analysis Framework 6.24.00 (15 April 2021) Yes GNU GPL: GUI: C++ C++, Python SageMath >100 developers worldwide 9.5 (30 January 2022; 2 years ago (10] Yes GNU GPL: CLI & GUI: Python, Cython Python Salstat: Alan J. Salmoni, Mark Livingstone 16 May 2014 () Yes GNU GPL: CLI & GUI: Python, NumPy, SciPy: Python SAS: SAS Institute

  3. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    The general ARMA model was described in the 1951 thesis of Peter Whittle, who used mathematical analysis (Laurent series and Fourier analysis) and statistical inference. [ 12 ] [ 13 ] ARMA models were popularized by a 1970 book by George E. P. Box and Jenkins, who expounded an iterative ( Box–Jenkins ) method for choosing and estimating them.

  4. Singular spectrum analysis - Wikipedia

    en.wikipedia.org/wiki/Singular_spectrum_analysis

    In time series analysis, singular spectrum analysis (SSA) is a nonparametric spectral estimation method. It combines elements of classical time series analysis, multivariate statistics , multivariate geometry, dynamical systems and signal processing .

  5. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values.

  6. Moving-average model - Wikipedia

    en.wikipedia.org/wiki/Moving-average_model

    In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [1] [2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.

  7. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    In time series analysis, the Box–Jenkins method, [1] named after the statisticians George Box and Gwilym Jenkins, applies autoregressive moving average (ARMA) or autoregressive integrated moving average (ARIMA) models to find the best fit of a time-series model to past values of a time series.

  8. Kaggle - Wikipedia

    en.wikipedia.org/wiki/Kaggle

    Kaggle is a data science competition platform and online community for data scientists and machine learning practitioners under Google LLC.Kaggle enables users to find and publish datasets, explore and build models in a web-based data science environment, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.

  9. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    In time series analysis used in statistics and econometrics, autoregressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA) models are generalizations of the autoregressive moving average (ARMA) model to non-stationary series and periodic variation, respectively.