Search results
Results from the WOW.Com Content Network
The nephridium (pl.: nephridia) is an invertebrate organ, found in pairs and performing a function similar to the vertebrate kidneys (which originated from the chordate nephridia). Nephridia remove metabolic wastes from an animal's body. Nephridia come in two basic categories: metanephridia and protonephridia.
The pronephros is a vital organ in animals that go through the aquatic larval stage. If in larvae the pronephros becomes non-functional, then they rapidly die from edema. [34] The pronephros is a relatively large organ that has a primitive structure and usually consists of a single pair of bilateral nephrons with an external glomerulus or glomus.
The way the kidneys do this is with nephrons. There are over 1 million nephrons in each kidney; these nephrons act as filters inside the kidneys. The kidneys filter needed materials and waste. Needed materials go back into the bloodstream; unneeded materials become urine and are expelled through the urethra.
In animals, the main excretory products are carbon dioxide, ammonia (in ammoniotelics), urea (in ureotelics), uric acid (in uricotelics), guanine (in Arachnida), and creatine. The liver and kidneys clear many substances from the blood (for example, in renal excretion ), and the cleared substances are then excreted from the body in the urine and ...
The concave part of the bean-shaped kidneys is called the renal hilum, through which the renal artery and nerves enter the kidney. The renal vein, collecting lymphatic vessels and ureter exit the kidney through the renal hilum. [6] [55] The kidneys are located retroperitoneally [6] on the back wall of the body of mammals. [7]
This illustration demonstrates the normal kidney physiology, including the Proximal Convoluted Tubule (PCT), Loop of Henle, and Distal Convoluted Tubule (DCT). It also includes illustrations showing where some types of diuretics act, and what they do. Renal physiology (Latin renes, "kidneys") is the study of the physiology of the kidney.
Aquaporins are "the plumbing system for cells". Water moves through cells in an organized way, most rapidly in tissues that have aquaporin water channels. [28] For many years, scientists assumed that water leaked through the cell membrane, and some water does. However, this did not explain how water could move so quickly through some cells. [28]
Relationship of major animal lineages with indication of how long ago these animals shared a common ancestor. On the left, important organs are shown, which allows us to determine how long ago these may have evolved. The organ level of organisation in animals can be first detected in flatworms and the more derived phyla, i.e. the bilaterians.