Search results
Results from the WOW.Com Content Network
Once the SCR starts conducting, no more gate voltage is required to maintain it in the ON state. The minimum current necessary to maintain the SCR in the ON state on removal of the gate voltage is called the latching current. There are two ways to turn it off: Reduce the current through it below a minimum value called the holding current, or
The device turns off when the anode voltage falls below a value (relative to the cathode) determined by the device characteristics. When off, it is considered a reverse voltage blocking device. [19] Gate turn-off thyristor (GTO) The gate turn-off thyristor, unlike an SCR, can be turned on and off with a gate pulse.
They have two MOSFETs of opposite conductivity types in their equivalent circuits. One is responsible for turn-on and the other for turn-off. A thyristor with only one MOSFET in its equivalent circuit, which can only be turned on (like normal SCRs), is called an MOS-gated thyristor. Schematic of a MOSFET-controlled thyristor
Here, it becomes important for the supply to pulse on and off at the correct position in the modulation cycle for a known value to be achieved; for example, the controller could turn on at the peak of a waveform or at its base if the cycle's time base were not taken into consideration.
This current is indicated in Figure 3 by a dotted red line and is the reason why a TRIAC needs more gate current to turn on than a comparably rated SCR. [3] Generally, this quadrant is the most sensitive of the four. This is because it is the only quadrant where gate current is injected directly into the base of one of the main device ...
A thyristor (/ θ aɪ ˈ r ɪ s t ər /, from a combination of Greek language θύρα, meaning "door" or "valve", and transistor [1]) is a solid-state semiconductor device which can be thought of as being a highly robust and switchable diode, allowing the passage of current in one direction but not the other, often under control of a gate electrode, that is used in high power applications ...
The high costs associated with lithographic scaling have led fab module engineers to place greater emphasis on incorporating new materials into their standard toolbox for transistor engineering.
The IGBT is the most rugged and the strongest power device yet developed, affording ease of use and so displacing bipolar transistors and even gate turn-off thyristors (GTOs). This excellent feature of the IGBT had suddenly emerged when the non-latch-up IGBT was established in 1984 by solving the problem of so-called "latch-up", which is the ...