enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    The energy levels in the hydrogen atom depend only on the principal quantum number n. For a given n , all the states corresponding to ℓ = 0 , … , n − 1 {\displaystyle \ell =0,\ldots ,n-1} have the same energy and are degenerate.

  3. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    This equation is obtained from combining the Rydberg formula for any hydrogen-like element (shown below) with E = hν = hc / λ assuming that the principal quantum number n above = n 1 in the Rydberg formula and n 2 = ∞ (principal quantum number of the energy level the electron descends from, when emitting a photon).

  4. Hydrogen spectral series - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_spectral_series

    n′ (often written ) is the principal quantum number of the lower energy level, n (or ) is the principal quantum number of the upper energy level, and; is the Rydberg constant. (1.096 77 × 10 7 m −1 for hydrogen and 1.097 37 × 10 7 m −1 for heavy metals). [5] [6]

  5. Stark effect - Wikipedia

    en.wikipedia.org/wiki/Stark_effect

    Computed energy level spectrum of hydrogen as a function of the electric field near n = 15 for magnetic quantum number m = 0. Each n level consists of n − 1 degenerate sublevels; application of an electric field breaks the degeneracy. Energy levels can cross due to underlying symmetries of motion in the Coulomb potential.

  6. Bohr model - Wikipedia

    en.wikipedia.org/wiki/Bohr_model

    The Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1), where the negatively charged electron confined to an atomic shell encircles a small, positively charged atomic nucleus and where an electron jumps between orbits, is accompanied by an emitted or absorbed amount of electromagnetic energy (hν). [1]

  7. Ground state - Wikipedia

    en.wikipedia.org/wiki/Ground_state

    Energy levels for an electron in an atom: ground state and excited states. After absorbing energy, an electron may jump from the ground state to a higher-energy excited state. The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system.

  8. Multiplicity (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(chemistry)

    The highest occupied orbital energy level of dioxygen is a pair of antibonding π* orbitals. In the ground state of dioxygen, this energy level is occupied by two electrons of the same spin, as shown in the molecular orbital diagram. The molecule, therefore, has two unpaired electrons and is in a triplet state.

  9. Energy level splitting - Wikipedia

    en.wikipedia.org/wiki/Energy_level_splitting

    In quantum physics, energy level splitting or a split in an energy level of a quantum system occurs when a perturbation changes the system. The perturbation changes the corresponding Hamiltonian and the outcome is change in eigenvalues ; several distinct energy levels emerge in place of the former degenerate (multi- state ) level.