Search results
Results from the WOW.Com Content Network
In the asymptotic setting, a family of deterministic polynomial time computable functions : {,} {,} for some polynomial p, is a pseudorandom number generator (PRNG, or PRG in some references), if it stretches the length of its input (() > for any k), and if its output is computationally indistinguishable from true randomness, i.e. for any probabilistic polynomial time algorithm A, which ...
It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...
Dice are an example of a mechanical hardware random number generator. When a cubical die is rolled, a random number from 1 to 6 is obtained. Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols is generated that cannot be reasonably predicted better than by random chance.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A USB-pluggable hardware true random number generator. In computing, a hardware random number generator (HRNG), true random number generator (TRNG), non-deterministic random bit generator (NRBG), [1] or physical random number generator [2] [3] is a device that generates random numbers from a physical process capable of producing entropy (in other words, the device always has access to a ...
Cryptographic attacks that subvert or exploit weaknesses in this process are known as random number generator attacks. A high quality random number generation (RNG) process is almost always required for security, and lack of quality generally provides attack vulnerabilities and so leads to lack of security, even to complete compromise, in ...
One-way permutation → pseudorandom generator A one-way permutation is a one-way function that is also a permutation of the input bits. A pseudorandom generator can be constructed from one-way permutation ƒ as follows: G l: {0,1} l →{0,1} l+1 = ƒ(x).B(x), where B is hard-core predicate of ƒ and "." is a concatenation operator.
In computer science, a generator is a routine that can be used to control the iteration behaviour of a loop. All generators are also iterators. [1] A generator is very similar to a function that returns an array, in that a generator has parameters, can be called, and generates a sequence of values.