Search results
Results from the WOW.Com Content Network
A two-point equidistant projection of Eurasia. If the length of the line segment connecting two projected points on the plane is proportional to the geodesic (shortest surface) distance between the two unprojected points on the globe, then we say that distance has been preserved between those two points.
Although any stereographic projection misses one point on the sphere (the projection point), the entire sphere can be mapped using two projections from distinct projection points. In other words, the sphere can be covered by two stereographic parametrizations (the inverses of the projections) from the plane.
The straight-line distance between the central point on the map to any other point is the same as the straight-line 3D distance through the globe between the two points. c. 150 BC: Stereographic: Azimuthal Conformal Hipparchos* Map is infinite in extent with outer hemisphere inflating severely, so it is often used as two hemispheres.
The line joining two self-conjugate points cannot be a self-conjugate line. A line cannot contain more than two self-conjugate points. A polarity induces an involution of conjugate points on any line that is not self-conjugate. A triangle in which each vertex is the pole of the opposite side is called a self-polar triangle.
Graphical projection methods rely on the duality between lines and points, whereby two straight lines determine a point while two points determine a straight line. The orthogonal projection of the eye point onto the picture plane is called the principal vanishing point (P.P. in the scheme on the right, from the Italian term punto principale ...
Then the projection sends P to a point P′ on the plane that is a distance d from S. To make this more precise, there is a unique circle centered at S, passing through P, and perpendicular to the plane. It intersects the plane in two points; let P′ be the one that is closer to P. This is the projected point. See the figure.
A conformal projection can be defined as one that is locally conformal at every point on the map, albeit possibly with singular points where conformality fails. Thus, every small figure is nearly similar to its image on the map. The projection preserves the ratio of two lengths in the small domain.
There are two types, points and lines, and one "incidence" relation between points and lines. The three axioms are: G1: Every line contains at least 3 points; G2: Every two distinct points, A and B, lie on a unique line, AB. G3: If lines AB and CD intersect, then so do lines AC and BD (where it is assumed that A and D are distinct from B and C).