enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    The theorem is used to find all rational roots of a polynomial, if any. It gives a finite number of possible fractions which can be checked to see if they are roots. If a rational root x = r is found, a linear polynomial ( x – r ) can be factored out of the polynomial using polynomial long division , resulting in a polynomial of lower degree ...

  3. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    If it is not the case, zero is a root, and the localization of the other roots may be studied by dividing the polynomial by a power of the indeterminate, getting a polynomial with a nonzero constant term. For k = 0 and k = n, Descartes' rule of signs shows that the polynomial has exactly one positive real root.

  4. Square root of 2 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_2

    This application also invokes the integer root theorem, a stronger version of the rational root theorem for the case when () is a monic polynomial with integer coefficients; for such a polynomial, all roots are necessarily integers (which is not, as 2 is not a perfect square) or irrational.

  5. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Typically, R is the ring of the integers, the field of fractions is the field of the rational numbers and the algebraically closed field is the field of the complex numbers. Vieta's formulas are then useful because they provide relations between the roots without having to compute them.

  6. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers ; they may be taken in any field K .

  7. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    If f is a function that is meromorphic on the whole Riemann sphere, then it has a finite number of zeros and poles, and the sum of the orders of its poles equals the sum of the orders of its zeros. Every rational function is meromorphic on the whole Riemann sphere, and, in this case, the sum of orders of the zeros or of the poles is the maximum ...

  8. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. [3]

  9. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    Bézout's theorem is a statement in algebraic geometry concerning the number of common zeros of n polynomials in n indeterminates. In its original form the theorem states that in general the number of common zeros equals the product of the degrees of the polynomials. [1] It is named after Étienne Bézout.