Search results
Results from the WOW.Com Content Network
The magnetic field is often created by a current-carrying coil of wire around the core. The use of a magnetic core can increase the strength of magnetic field in an electromagnetic coil by a factor of several hundred times what it would be without the core. However, magnetic cores have side effects which must be taken into account.
Paramagnetic materials are attracted to magnetic fields, hence have a relative magnetic permeability greater than one (or, equivalently, a positive magnetic susceptibility). The magnetic moment induced by the applied field is linear in the field strength, and it is rather weak. It typically requires a sensitive analytical balance to detect the ...
A coil with a core which is a straight bar or other non-loop shape is called an open-core coil. This has lower magnetic field and inductance than a closed core, but is often used to prevent magnetic saturation of the core. A coil without a ferromagnetic core is called an air-core coil. [14]
For a magnetic circuit constructed with an air gap or air gaps, the permeability of a hypothetical homogeneous material which would provide the same reluctance; (these "effective" above are sizes of a toroid core made from the same material which has the same magnetic properties as the core); Minimum cross-section, A min; Inductance factor, A L
Much stronger magnetic fields can be produced if a magnetic core, made of a soft ferromagnetic (or ferrimagnetic) material such as iron, is placed inside the coil. [ 1 ] [ 2 ] [ 15 ] [ 16 ] A core can increase the magnetic field to thousands of times the strength of the field of the coil alone, due to the high magnetic permeability μ ...
The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by q m (Wb) = μ 0 q m (Am).
Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance ( 1 / distance 3 ) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]
Magnetic field (green) induced by a current-carrying wire winding (red) in a magnetic circuit consisting of an iron core C forming a closed loop with two air gaps G in it. In an analogy to an electric circuit, the winding acts analogously to an electric battery, providing the magnetizing field , the core pieces act like wires, and the gaps G act like resistors.