Search results
Results from the WOW.Com Content Network
An electric fish generates an electric field using an electric organ, modified from muscles in its tail. The field is called weak if it is only enough to detect prey, and strong if it is powerful enough to stun or kill. The field may be in brief pulses, as in the elephantfishes, or a continuous wave, as in the knifefishes.
These fibres signal the size of the detected electric field to the fish's brain. [14] The ampulla contains large conductance calcium-activated potassium channels (BK channels). Sharks are much more sensitive to electric fields than electroreceptive freshwater fish, and indeed than any other animal, with a threshold of sensitivity as low as 5 nV/cm.
Electric organ discharges are two types, pulse and wave, and vary both by species and by function. Electric fish have evolved many specialised behaviours. The predatory African sharptooth catfish eavesdrops on its weakly electric mormyrid prey to locate it when hunting, driving the prey fish to develop electric signals that are harder to detect.
Electroreception is the ability to detect electric fields or currents. Some fish, such as catfish and sharks, have organs that detect weak electric potentials on the order of millivolts. [ 24 ] Other fish, like the South American electric fishes Gymnotiformes , can produce weak electric currents, which they use in navigation and social ...
Magnetoreception is a sense which allows an organism to detect the Earth's magnetic field. Animals with this sense include some arthropods, molluscs, and vertebrates (fish, amphibians, reptiles, birds, and mammals). The sense is mainly used for orientation and navigation, but it may help some animals to
Parking structures for automobiles may use inductive loops to track traffic (occupancy) in and out or may be used by access gates or ticketing systems to detect vehicles while others use parking guidance and information systems. Railways may use an induction loop to detect the passage of trains past a given point, as an electronic treadle.
This category includes animals with the biological ability to perceive natural electrical stimuli. Subcategories This category has only the following subcategory.
Electric eels use electricity in multiple ways. Low voltages are used to sense the surrounding environment. High voltages are used to detect prey and, separately, stun them, at which point the electric eel applies a suction-feeding bite. [12] Anatomy of an electric eel's electric organs. Sachs' organ is associated with electrolocation. Inside ...