Search results
Results from the WOW.Com Content Network
In mathematics and physics, the right-hand rule is a convention and a mnemonic, utilized to define the orientation of axes in three-dimensional space and to determine the direction of the cross product of two vectors, as well as to establish the direction of the force on a current-carrying conductor in a magnetic field.
Conventionally, it is given by the right-hand rule, where one simply points the forefinger of the right hand in the direction of a and the middle finger in the direction of b. Then, the vector n is coming out of the thumb (see the adjacent picture). Using this rule implies that the cross product is anti-commutative; that is, b × a = −(a × b).
There is also a Fleming's left-hand rule (for electric motors). The appropriately handed rule can be recalled from the letter "g", which is in "right" and "generator". These mnemonics are named after British engineer John Ambrose Fleming, who invented them. An equivalent version of Fleming's right-hand rule is the left-hand palm rule. [2]
A commonly used mnemonic for defining the positive orientation is the right-hand rule. Placing a somewhat closed right hand on the plane with the thumb pointing up, the fingers point from the x-axis to the y-axis, in a positively oriented coordinate system. The other way of orienting the plane is following the left-hand rule, placing the left ...
The left-handed orientation is shown on the left, and the right-handed on the right. The orientation of a real vector space or simply orientation of a vector space is the arbitrary choice of which ordered bases are "positively" oriented and which are "negatively" oriented.
The axes of the original frame are denoted as x, y, z and the axes of the rotated frame as X, Y, Z.The geometrical definition (sometimes referred to as static) begins by defining the line of nodes (N) as the intersection of the planes xy and XY (it can also be defined as the common perpendicular to the axes z and Z and then written as the vector product N = z × Z).
The various FBI mnemonics (for electric motors) show the direction of the force on a conductor carrying a current in a magnetic field as predicted by Fleming's left hand rule for motors [1] and Faraday's law of induction. Other mnemonics exist that use a right hand rule for predicting resulting motion from a preexisting current and field.
The results of this equation align with what could have been predicted using the right-hand rule using a right-handed coordinate system. Being a uniform vector field, the object described before would have the same rotational intensity regardless of where it was placed.