Search results
Results from the WOW.Com Content Network
In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.
The Joule-Thomson (JT) cooler was invented by Carl von Linde and William Hampson so it is also called the Linde-Hampson cooler. It is a simple type of cooler which is widely applied as cryocooler or as the (final stage) of coolants. It can easily be miniaturized, but it is also used on a very large scale in the liquefaction of natural gas.
The Joule–Thomson effect, the temperature change of a gas when it is forced through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment. The Gough–Joule effect or the Gow–Joule effect, which is the tendency of elastomers to contract if heated while they are under tension.
This temperature change is known as the Joule–Thomson effect, and is exploited in the liquefaction of gases. Inversion temperature depends on the nature of the gas. For a van der Waals gas we can calculate the enthalpy using statistical mechanics as
An expansion valve is a valve used for different purposes: Steam engines. A valve used to control the expansion of steam: ... Joule-Thomson cooler; heat pump; Also
The expansion valve partially vaporizes the refrigerant cooling it via evaporative cooling and the resulting vapor is cooled via expansive cooling. (This is a combination of Joule-Thomson cooling and work done by the expanding gas, both at the expense of the internal energy of the gas) The cold, low pressure liquid refrigerant will now absorb ...
The gas is further cooled by passing the gas through a Joule–Thomson orifice (expansion valve); the gas is now at the lower pressure. The low pressure gas is now at its coolest in the current cycle. Some of the gas condenses and becomes output product.
A split range pressure controller may also modulate a Joule-Thomson valve across the turbo-expander. [10] [4] Pressure in blanketed tanks is maintained by self actuating pressure control valves (PCVs). As liquid is withdrawn from the tank the pressure in the gas space falls. The blanket gas supply valve opens to maintain the pressure.