Search results
Results from the WOW.Com Content Network
Although an explicit inverse is not necessary to estimate the vector of unknowns, it is the easiest way to estimate their accuracy and os found in the diagonal of a matrix inverse (the posterior covariance matrix of the vector of unknowns). However, faster algorithms to compute only the diagonal entries of a matrix inverse are known in many cases.
In mathematics, and in particular linear algebra, the Moore–Penrose inverse + of a matrix , often called the pseudoinverse, is the most widely known generalization of the inverse matrix. [1] It was independently described by E. H. Moore in 1920, [2] Arne Bjerhammar in 1951, [3] and Roger Penrose in 1955. [4]
The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's method. In particular, if either exp {\displaystyle \exp } or log {\displaystyle \log } in the complex domain can be computed with some complexity, then that complexity is ...
An arbitrary square matrix C can be written as the sum of a Hermitian matrix A and a skew-Hermitian matrix B. This is known as the Toeplitz decomposition of C . [ 9 ] : 227 C = A + B with A = 1 2 ( C + C H ) and B = 1 2 ( C − C H ) {\displaystyle C=A+B\quad {\text{with}}\quad A={\frac {1}{2}}\left(C+C^{\mathsf {H}}\right)\quad {\text{and ...
A set of three 2 × 2 complex Hermitian and unitary matrices. When combined with the I 2 identity matrix, they form an orthogonal basis for the 2 × 2 complex Hermitian matrices. Redheffer matrix: Encodes a Dirichlet convolution. Matrix entries are given by the divisor function; entires of the inverse are given by the Möbius function.
The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.