Search results
Results from the WOW.Com Content Network
Psychoacoustics is the branch of psychophysics involving the scientific study of the perception of sound by the human auditory system.It is the branch of science studying the psychological responses associated with sound including noise, speech, and music.
Sound propagates as mechanical vibration waves of pressure and displacement, in air or other substances. [5] In general, frequency components of a sound determine its "color", its timbre . When speaking about the frequency (in singular) of a sound, it means the property that most determines its pitch . [ 6 ]
The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), often described as being equivalent to one event (or cycle) per second. [ 1 ] [ a ] The hertz is an SI derived unit whose formal expression in terms of SI base units is s −1 , meaning that one hertz is one per second or the reciprocal of one second . [ 2 ]
A soundbar, sound bar or media bar is a type of loudspeaker that projects audio from a wide enclosure. It is much wider than it is tall, partly for acoustic reasons, and partly so it can be mounted above or below a display device (e.g. above a computer monitor or under a home theater or television screen).
A distinct use of the term sound from its use in physics is that in physiology and psychology, where the term refers to the subject of perception by the brain. The field of psychoacoustics is dedicated to such studies. Webster's dictionary defined sound as: "1. The sensation of hearing, that which is heard; specif.: a. Psychophysics.
Frequency (symbol f), most often measured in hertz (symbol: Hz), is the number of occurrences of a repeating event per unit of time. [1] It is also occasionally referred to as temporal frequency for clarity and to distinguish it from spatial frequency.
The horizontal axis shows frequency in Hertz. In acoustics, loudness is the subjective perception of sound pressure.More formally, it is defined as the "attribute of auditory sensation in terms of which sounds can be ordered on a scale extending from quiet to loud". [1]
For example, ERB = 3.36 Hz corresponds to a frequency at the apical end of the basilar membrane, whereas ERB = 38.9 Hz corresponds to the base, and a value of 19.5 Hz falls half-way between the two. [6] One filter type used to model the auditory filters is the gammatone filter.