Ad
related to: ferritic vs austenitic stainless steel
Search results
Results from the WOW.Com Content Network
Ferritic stainless steel alloys are designated as part of the 400-series of stainless steels in the SAE steel grades numbering system. By comparison with austenitic stainless steels, these are less hardenable by cold working and less weldable, but more cost-effective due to the lower nickel content.
300 series stainless steels are the larger subgroup. The most common austenitic stainless steel and most common of all stainless steel is Type 304, also known as 18/8 or A2. Type 304 is extensively used in such items as cookware, cutlery, and kitchen equipment. Type 316, also known as A4, is the next most common austenitic stainless steel.
The main differences in composition, when compared with austenitic stainless steel is that duplex steels have a higher chromium content, 20–28%; higher molybdenum, up to 5%; lower nickel, up to 9% and 0.05–0.50% nitrogen. Both the low nickel content and the high strength (enabling thinner sections to be used) give significant cost benefits.
630 through 635: Semiaustenitic and martensitic precipitation hardening stainless steels. Type 630 is most common PH stainless, better known as 17-4; 17% chromium, 4% nickel. 650 through 653: Austenitic steels strengthened by hot/cold work. 660 through 665: Austenitic superalloys; all grades except alloy 661 are strengthened by second-phase ...
The final matte, non-glare finish meets or exceeds stainless steel specifications, is 85% more corrosion resistant than a hard chrome finish, and is 99.9% salt-water corrosion resistant. [31] After the Tenifer process, a black Parkerized finish is applied and the slide is protected even if the finish were to wear off.
Ferritic stainless steels have a body-centered cubic crystal structure, are magnetic, and are hardenable by cold working, but not by heat treating. They contain between 10.5% and 27% chromium with very little or no nickel. Due to the near-absence of nickel, they are less expensive than austenitic stainless steels.
Martensitic stainless steels can be high- or low-carbon steels built around the composition of iron, 12% up to 17% chromium, carbon from 0.10% (Type 410) up to 1.2% (Type 440C): [8] The chromium and carbon contents are balanced to have a martensitic structure.
Depending on the environment and atmospheric conditions different substrate alloys are used. The stainless steel alloy 439 is ferritic and is used for normal environments; for coastal applications, the austenitic stainless steel alloy 316L is used providing an increased corrosion resistance to chlorides.
Ad
related to: ferritic vs austenitic stainless steel