Search results
Results from the WOW.Com Content Network
The duality gap is zero if and only if strong duality holds. Otherwise the gap is strictly positive and weak duality holds. [5] In computational optimization, another "duality gap" is often reported, which is the difference in value between any dual solution and the value of a feasible but suboptimal iterate for the primal problem.
A set C (blue) and its dual cone C * (red).. A duality in geometry is provided by the dual cone construction. Given a set of points in the plane (or more generally points in ), the dual cone is defined as the set consisting of those points (,) satisfying + for all points (,) in , as illustrated in the diagram.
Strong duality is a condition in mathematical optimization in which the primal optimal objective and the dual optimal objective are equal. By definition, strong duality holds if and only if the duality gap is equal to 0.
This alternative "duality gap" quantifies the discrepancy between the value of a current feasible but suboptimal iterate for the primal problem and the value of the dual problem; the value of the dual problem is, under regularity conditions, equal to the value of the convex relaxation of the primal problem: The convex relaxation is the problem ...
The strong duality theorem says that if one of the two problems has an optimal solution, so does the other one and that the bounds given by the weak duality theorem are tight, i.e.: max x c T x = min y b T y. The strong duality theorem is harder to prove; the proofs usually use the weak duality theorem as a sub-routine.
In mathematical optimization, the perturbation function is any function which relates to primal and dual problems. The name comes from the fact that any such function defines a perturbation of the initial problem. In many cases this takes the form of shifting the constraints. [1]
In mathematics, a duality, generally speaking, translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of A is B, then the dual of B is A.
In applied mathematics, weak duality is a concept in optimization which states that the duality gap is always greater than or equal to 0. This means that for any minimization problem, called the primal problem, the solution to the primal problem is always greater than or equal to the solution to the dual maximization problem.