Search results
Results from the WOW.Com Content Network
In mathematics, a telescoping series is a series whose general term is of the form = +, i.e. the difference of two consecutive terms of a sequence (). As a consequence the partial sums of the series only consists of two terms of ( a n ) {\displaystyle (a_{n})} after cancellation.
The commented Poisson problem does not have a solution for any functional boundary conditions f 1, f 2, g 1, g 2; however, given f 1, f 2 it is always possible to find boundary functions g 1 *, g 2 * so close to g 1, g 2 as desired (in the weak convergence meaning) for which the problem has solution. This property makes it possible to solve ...
First, a non-negative function L(t) is defined as a scalar measure of the state of all queues at time t. The function L(t) is typically defined as the sum of the squares of all queue sizes at time t, and is called a Lyapunov function. The Lyapunov drift is defined: = (+) ()
More sophisticated types of convergence of a series of functions can also be defined. In measure theory, for instance, a series of functions converges almost everywhere if it converges pointwise except on a set of measure zero. Other modes of convergence depend on a different metric space structure on the space of functions under consideration.
If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x 1 in the basin of attraction of x, and let x n+1 = f(x n) for n ≥ 1, and the sequence {x n} n ≥ 1 will converge to the solution x.
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
The function f is convex (it is a maximum of linear functions). Denote the minimum value by f*. Then the answer to the decision problem is "yes" iff f*≤0. Step 4: In the optimization problem min z f(z), we can assume that z is in a box of side-length 2 L, where L is the bit length of the problem data.
Substituting this into the Clairaut's equation, one obtains the family of straight line functions given by y ( x ) = C x + f ( C ) , {\displaystyle y(x)=Cx+f(C),\,} the so-called general solution of Clairaut's equation.