enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    Power in mechanical systems is the combination of forces and movement. In particular, power is the product of a force on an object and the object's velocity, or the product of a torque on a shaft and the shaft's angular velocity. Mechanical power is also described as the time derivative of work.

  3. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]

  4. Defining equation (physical chemistry) - Wikipedia

    en.wikipedia.org/wiki/Defining_equation...

    Theoretical chemistry requires quantities from core physics, such as time, volume, temperature, and pressure.But the highly quantitative nature of physical chemistry, in a more specialized way than core physics, uses molar amounts of substance rather than simply counting numbers; this leads to the specialized definitions in this article.

  5. Power law - Wikipedia

    en.wikipedia.org/wiki/Power_law

    In statistics, a power law is a functional relationship between two quantities, where a relative change in one quantity results in a relative change in the other quantity proportional to the change raised to a constant exponent: one quantity varies as a power of another. The change is independent of the initial size of those quantities.

  6. Energy - Wikipedia

    en.wikipedia.org/wiki/Energy

    This equation is highly specific, ignoring all chemical, electrical, nuclear, and gravitational forces, effects such as advection of any form of energy other than heat and PV-work. The general formulation of the first law (i.e., conservation of energy) is valid even in situations in which the system is not homogeneous.

  7. Resolution (mass spectrometry) - Wikipedia

    en.wikipedia.org/wiki/Resolution_(mass_spectrometry)

    Some mass spectrometrists use the definition that is similar to definitions used in some other fields of physics and chemistry. In this case, resolving power is defined as: R = M Δ M = r e s o l v i n g p o w e r {\displaystyle R={\cfrac {M}{\Delta M}}=\mathrm {resolving\ power} }

  8. Chemical equation - Wikipedia

    en.wikipedia.org/wiki/Chemical_equation

    A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction. [1]

  9. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    N i is the number of particles (or number of moles) composing the ith chemical component. This is one form of the Gibbs fundamental equation. [10] In the infinitesimal expression, the term involving the chemical potential accounts for changes in Gibbs free energy resulting from an influx or outflux of particles.