enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Farad - Wikipedia

    en.wikipedia.org/wiki/Farad

    Values of capacitors are usually specified in terms of SI prefixes of farads (F), microfarads (μF), nanofarads (nF) and picofarads (pF). [9] The millifarad (mF) is rarely used in practice; a capacitance of 4.7 mF (0.0047 F), for example, is instead written as 4 700 μF. The nanofarad (nF) is used more often in Europe than in the United States ...

  3. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    It is the time required to charge the capacitor, through the resistor, from an initial charge voltage of zero to approximately 63.2% of the value of an applied DC voltage, or to discharge the capacitor through the same resistor to approximately 36.8% of its initial charge voltage.

  4. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    Combining the equation for capacitance with the above equation for the energy stored in a capacitor, for a flat-plate capacitor the energy stored is: = =. where is the energy, in joules; is the capacitance, in farads; and is the voltage, in volts.

  5. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  6. Supercapacitor - Wikipedia

    en.wikipedia.org/wiki/Supercapacitor

    Thus, the standard formula for conventional plate capacitors can be used to calculate their capacitance: [26] C = ε A d {\displaystyle C=\varepsilon {\frac {A}{d}}} . Accordingly, capacitance C is greatest in capacitors made from materials with a high permittivity ε , large electrode plate surface areas A and small distance between plates d .

  7. Electric susceptibility - Wikipedia

    en.wikipedia.org/wiki/Electric_susceptibility

    In electricity (electromagnetism), the electric susceptibility (; Latin: susceptibilis "receptive") is a dimensionless proportionality constant that indicates the degree of polarization of a dielectric material in response to an applied electric field.

  8. Relative permittivity - Wikipedia

    en.wikipedia.org/wiki/Relative_permittivity

    The relative permittivity is an essential piece of information when designing capacitors, and in other circumstances where a material might be expected to introduce capacitance into a circuit. If a material with a high relative permittivity is placed in an electric field , the magnitude of that field will be measurably reduced within the volume ...

  9. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.