Search results
Results from the WOW.Com Content Network
The assumption underlying this practice is that the quotient of activities is constant under the conditions in which the equilibrium constant value is determined. These conditions are usually achieved by keeping the reaction temperature constant and by using a medium of relatively high ionic strength as the solvent. It is not unusual ...
In chemistry, Le Chatelier's principle (pronounced UK: / l ə ʃ æ ˈ t ɛ l j eɪ / or US: / ˈ ʃ ɑː t əl j eɪ /) [1] is a principle used to predict the effect of a change in conditions on chemical equilibrium. [2] Other names include Chatelier's principle, Braun–Le Chatelier principle, Le Chatelier–Braun principle or the equilibrium ...
The effect of temperature on the extent of the Boudouard reaction is indicated better by the value of the equilibrium constant than by the standard free energy of reaction. The value of log 10 (K eq) for the reaction as a function of temperature in Kelvin (valid between 500– 2200 K) is approximately: [4]
Its symbol is Δ f G˚. All elements in their standard states (diatomic oxygen gas, graphite, etc.) have standard Gibbs free energy change of formation equal to zero, as there is no change involved. Δ f G = Δ f G˚ + RT ln Q f, where Q f is the reaction quotient. At equilibrium, Δ f G = 0, and Q f = K, so the equation becomes Δ f G˚ = − ...
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
Le Châtelier's principle (1884) predicts the behavior of an equilibrium system when changes to its reaction conditions occur. If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to partially reverse the change. For example, adding more S (to the chemical reaction above) from the outside will ...
The global climate of the Paleogene transitioned from hot and humid conditions of the Cretaceous to a cooling trend which persists proceeded today, perhaps starting from the extinction events that occurred at the K–T boundary. This global cooling has been periodically disrupted by warm events such as the Paleocene–Eocene Thermal Maximum ...
In a system that is in its own state of internal thermodynamic equilibrium, not only is there an absence of macroscopic change, but there is an “absence of any tendency toward change on a macroscopic scale.” [1] Systems in mutual thermodynamic equilibrium are simultaneously in mutual thermal, mechanical, chemical, and radiative equilibria ...