Search results
Results from the WOW.Com Content Network
Download as PDF; Printable version; In other projects Wikimedia Commons; Wikidata item; ... Pages in category "Binary arithmetic" The following 100 pages are in this ...
A carry-save adder [1] [2] [nb 1] is a type of digital adder, used to efficiently compute the sum of three or more binary numbers. It differs from other digital adders in that it outputs two (or more) numbers, and the answer of the original summation can be achieved by adding these outputs together.
A calendrical calculation is a calculation concerning calendar dates. Calendrical calculations can be considered an area of applied mathematics. Some examples of calendrical calculations: Converting a Julian or Gregorian calendar date to its Julian day number and vice versa (see § Julian day number calculation within that article for details).
Sign extension (sometimes abbreviated as sext, particularly in mnemonics) is the operation, in computer arithmetic, of increasing the number of bits of a binary number while preserving the number's sign (positive/negative) and value.
The serial binary adder or bit-serial adder is a digital circuit that performs binary addition bit by bit. The serial full adder has three single-bit inputs for the numbers to be added and the carry in. There are two single-bit outputs for the sum and carry out. The carry-in signal is the previously calculated carry-out signal.
In digital circuits, an adder–subtractor is a circuit that is capable of adding or subtracting numbers (in particular, binary). Below is a circuit that adds or subtracts depending on a control signal. It is also possible to construct a circuit that performs both addition and subtraction at the same time. [1]
During the addition, each carry is "signaled" rather than performed, and during the carry cycle, the machine increments the digits above the "triggered" digits. This operation has to be performed sequentially, starting with the ones digit, then the tens, the hundreds, and so on, since adding the carry can generate a new carry in the next digit.
Addition of a pair of two's-complement integers is the same as addition of a pair of unsigned numbers (except for detection of overflow, if that is done); the same is true for subtraction and even for N lowest significant bits of a product (value of multiplication). For instance, a two's-complement addition of 127 and −128 gives the same ...