enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Rank–nullity_theorem

    Rank–nullity theorem. The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and; the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of ...

  3. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    Row operations do not change the row space (hence do not change the row rank), and, being invertible, map the column space to an isomorphic space (hence do not change the column rank). Once in row echelon form, the rank is clearly the same for both row rank and column rank, and equals the number of pivots (or basic columns) and also the number ...

  4. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The dimension of the row space is called the rank of the matrix. This is the same as the maximum number of linearly independent rows that can be chosen from the matrix, or equivalently the number of pivots. For example, the 3 × 3 matrix in the example above has rank two. [9] The rank of a matrix is also equal to the dimension of the column space.

  5. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The dimension of the row space of A is called the rank of A, and the dimension of the kernel of A is called the nullity of A. These quantities are related by the rank–nullity theorem [ 4 ] rank ⁡ ( A ) + nullity ⁡ ( A ) = n . {\displaystyle \operatorname {rank} (A)+\operatorname {nullity} (A)=n.}

  6. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    The above procedure shows why taking the pseudoinverse is not a continuous operation: if the original matrix ⁠ ⁠ has a singular value 0 (a diagonal entry of the matrix ⁠ ⁠ above), then modifying ⁠ ⁠ slightly may turn this zero into a tiny positive number, thereby affecting the pseudoinverse dramatically as we now have to take the ...

  7. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    A matrix with the same number of rows and columns is called a square matrix. [5] A matrix with an infinite number of rows or columns (or both) is called an infinite matrix. In some contexts, such as computer algebra programs, it is useful to consider a matrix with no rows or no columns, called an empty matrix.

  8. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Top: The action of M, indicated by its effect on the unit disc D and the two canonical unit vectors e 1 and e 2. Left: The action of V ⁎, a rotation, on D, e 1, and e 2. Bottom: The action of Σ, a scaling by the singular values σ 1 horizontally and σ 2 vertically.

  9. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    The QR decomposition via Givens rotations is the most involved to implement, as the ordering of the rows required to fully exploit the algorithm is not trivial to determine. However, it has a significant advantage in that each new zero element affects only the row with the element to be zeroed (i) and a row above (j). This makes the Givens ...