enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are the radial distance r along the line connecting the point to a fixed point called the origin; the polar angle θ between this radial line and a given polar axis; [a] and

  3. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...

  4. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    This is more than an analogy; spherical and plane geometry and others can all be unified under the umbrella of geometry built from distance measurement, where "lines" are defined to mean shortest paths (geodesics). Many statements about the geometry of points and such "lines" are equally true in all those geometries provided lines are defined ...

  5. Coordinate system - Wikipedia

    en.wikipedia.org/wiki/Coordinate_system

    The spherical coordinate system is commonly used in physics. It assigns three numbers (known as coordinates) to every point in Euclidean space: radial distance r, polar angle θ , and azimuthal angle φ . The symbol ρ is often used instead of r.

  6. Spherical circle - Wikipedia

    en.wikipedia.org/wiki/Spherical_circle

    In spherical geometry, a spherical circle (often shortened to circle) is the locus of points on a sphere at constant spherical distance (the spherical radius) from a given point on the sphere (the pole or spherical center).

  7. Haversine formula - Wikipedia

    en.wikipedia.org/wiki/Haversine_formula

    d is the distance between the two points along a great circle of the sphere (see spherical distance), r is the radius of the sphere. The haversine formula allows the haversine of θ to be computed directly from the latitude (represented by φ) and longitude (represented by λ) of the two points:

  8. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    'Radius' is used in two senses: as a line segment and also as its length. [3] If a radius is extended through the center to the opposite side of the sphere, it creates a diameter. Like the radius, the length of a diameter is also called the diameter, and denoted d.

  9. Vector fields in cylindrical and spherical coordinates

    en.wikipedia.org/wiki/Vector_fields_in...

    Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken ...