enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Atmospheric diffraction - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_diffraction

    Optical atmospheric diffraction; Radio wave diffraction is the scattering of radio frequency or lower frequencies from the Earth's ionosphere, resulting in the ability to achieve greater distance radio broadcasting. Sound wave diffraction is the bending of sound waves, as the sound travels around edges of geometric objects. This produces the ...

  3. Acoustical engineering - Wikipedia

    en.wikipedia.org/wiki/Acoustical_engineering

    Diffraction is the bending of sound waves around surfaces in the path of the wave. Refraction is the bending of sound waves caused by changes in the medium through which the wave is passing. For example, temperature gradients can cause sound wave refraction. [27] Acoustical engineers apply these fundamental concepts, along with mathematical ...

  4. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    Diffraction can occur with any kind of wave. Ocean waves diffract around jetties and other obstacles. Circular waves generated by diffraction from the narrow entrance of a flooded coastal quarry. Sound waves can diffract around objects, which is why one can still hear someone calling even when hiding behind a tree. [19]

  5. Acoustic wave - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave

    An acoustic wave is a mechanical wave that transmits energy through the movements of atoms and molecules. Acoustic waves transmit through fluids in a longitudinal manner (movement of particles are parallel to the direction of propagation of the wave); in contrast to electromagnetic waves that transmit in transverse manner (movement of particles at a right angle to the direction of propagation ...

  6. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile. Intuitively the wave envelope is the "global profile" of the wave, which "contains" changing "local profiles inside the global profile".

  7. Kirchhoff's diffraction formula - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_diffraction...

    A geometrical arrangement used in deriving the Kirchhoff's diffraction formula. The area designated by A 1 is the aperture (opening), the areas marked by A 2 are opaque areas, and A 3 is the hemisphere as a part of the closed integral surface (consisted of the areas A 1, A 2, and A 3) for the Kirchhoff's integral theorem.

  8. How We Hear: From Soundwave to Brainwave - AOL

    www.aol.com/hear-soundwave-brainwave-000000514.html

    In summary, the hearing process is complex and fascinating as it involves the transmission of sound waves to neural signals and the interpretation of those signals in the brain. Key points to ...

  9. Room acoustics - Wikipedia

    en.wikipedia.org/wiki/Room_acoustics

    It changes the disturbing echo of the sound into a mild reverb which decays over time. Diffraction is the change of a sound wave's propagation to avoid obstacles. According to Huygens’ principle, when a sound wave is partially blocked by an obstacle, the remaining part that gets through acts as a source of secondary waves. [17]