Search results
Results from the WOW.Com Content Network
The idea is do a regular exponential moving average (EMA) calculation but on a de-lagged data instead of doing it on the regular data. Data is de-lagged by removing the data from "lag" days ago thus removing (or attempting to) the cumulative effect of the moving average.
Some commercial packages, like AIQ, use a standard exponential moving average (EMA) as the average instead of Wilder's SMMA. The smoothed moving averages should be appropriately initialized with a simple moving average using the first n values in the price series. The ratio of these averages is the relative strength or relative strength factor:
An exponential moving average (EMA), also known as an exponentially weighted moving average (EWMA), [5] is a first-order infinite impulse response filter that applies weighting factors which decrease exponentially. The weighting for each older datum decreases exponentially, never reaching zero. This formulation is according to Hunter (1986). [6]
Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...
The name suggests this is achieved by applying a double exponential smoothing which is not the case. The name double comes from the fact that the value of an EMA (Exponential Moving Average) is doubled. To keep it in line with the actual data and to remove the lag the value "EMA of EMA" is subtracted from the previously doubled ema.
The SMA value of a set of values (or a continuous-time waveform) is the normalized integral of the original values. [1] [2] In the case of a set of n values {,, …,} matching a time length T, the SMA = =
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The Triple Exponential Moving Average (TEMA) is a technical indicator in technical analysis that attempts to remove the inherent lag associated with moving averages by placing more weight on recent values. The name suggests this is achieved by applying a triple exponential smoothing which is not the case.