Search results
Results from the WOW.Com Content Network
It is an extension of an M/M/1 queue, where this renewal process must specifically be a Poisson process (so that interarrival times have exponential distribution). Models of this type can be solved by considering one of two M/G/1 queue dual systems, one proposed by Ramaswami and one by Bright.
Few results are known for the general G/G/k model as it generalises the M/G/k queue for which few metrics are known. Bounds can be computed using mean value analysis techniques, adapting results from the M/M/c queue model, using heavy traffic approximations, empirical results [8]: 189 [9] or approximating distributions by phase type distributions and then using matrix analytic methods to solve ...
where as above is the Laplace–Stieltjes transform of the service time distribution function. This relationship can only be solved exactly in special cases (such as the M/M/1 queue ), but for any s {\textstyle s} the value of ϕ ( s ) {\textstyle \phi (s)} can be calculated and by iteration with upper and lower bounds the distribution function ...
A M/M/1 queue means that the time between arrivals is Markovian (M), i.e. the inter-arrival time follows an exponential distribution of parameter λ. The second M means that the service time is Markovian: it follows an exponential distribution of parameter μ. The last parameter is the number of service channel which one (1).
The average response time or sojourn time (total time a customer spends in the system) does not depend on scheduling discipline and can be computed using Little's law as 1/(μ − λ). The average time spent waiting is 1/(μ − λ) − 1/μ = ρ/(μ − λ). The distribution of response times experienced does depend on scheduling discipline.
The function is the intensity of an underlying Poisson process. The first arrival occurs at time t 1 {\textstyle t_{1}} and immediately after that, the intensity becomes μ ( t ) + ϕ ( t − t 1 ) {\textstyle \mu (t)+\phi (t-t_{1})} , and at the time t 2 {\textstyle t_{2}} of the second arrival the intensity jumps to μ ( t ) + ϕ ( t − t 1 ...
Lindley's integral equation is a relationship satisfied by the stationary waiting time distribution F(x) in a G/G/1 queue. = ()Where K(x) is the distribution function of the random variable denoting the difference between the (k - 1)th customer's arrival and the inter-arrival time between (k - 1)th and kth customers.
The matrix geometric method and matrix analytic methods have allowed queues with phase-type distributed inter-arrival and service time distributions to be considered. [18] Systems with coupled orbits are an important part in queueing theory in the application to wireless networks and signal processing. [19]