enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Speed of light - Wikipedia

    en.wikipedia.org/wiki/Speed_of_Light

    The speed of light in vacuum, commonly denoted c, is a universal physical constant that is exactly equal to 299,792,458 metres per second (approximately 300,000 kilometres per second; 186,000 miles per second; 671 million miles per hour).

  3. Foucault's measurements of the speed of light - Wikipedia

    en.wikipedia.org/wiki/Foucault's_measurements_of...

    In 1845, Arago suggested to Fizeau and Foucault that they attempt to measure the speed of light. Sometime in 1849, however, it appears that the two had a falling out, and they parted ways. [5]: 124 [3] In 1848−49, Fizeau used, not a rotating mirror, but a toothed wheel apparatus to perform an absolute measurement of the speed of light in air.

  4. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    The phase velocity is the speed at which the crests or the phase of the wave moves, which may be different from the group velocity, the speed at which the pulse of light or the envelope of the wave moves. [1] Historically air at a standardized pressure and temperature has been common as a reference medium.

  5. List of optics equations - Wikipedia

    en.wikipedia.org/wiki/List_of_optics_equations

    Image distance in a spherical mirror + = () Subscripts 1 and 2 refer to initial and final optical media respectively. These ratios are sometimes also used, following simply from other definitions of refractive index, wave phase velocity, and the luminal speed equation:

  6. Fizeau's measurement of the speed of light in air - Wikipedia

    en.wikipedia.org/wiki/Fizeau's_measurement_of_the...

    At 3 times the speed it was again eclipsed. [3] [4] Given the rotational speed of the wheel and the distance between the wheel and the mirror, Fizeau was able to calculate a value of 2 × 8633m × 720 × 25.2/s = 313,274,304 m/s for the speed of light. Fizeau's value for the speed of light was 4.5% too high. [5] The correct value is 299,792,458 ...

  7. Length contraction - Wikipedia

    en.wikipedia.org/wiki/Length_contraction

    Then, at a speed of 13 400 000 m/s (30 million mph, 0.0447 c) contracted length is 99.9% of the length at rest; at a speed of 42 300 000 m/s (95 million mph, 0.141 c), the length is still 99%. As the magnitude of the velocity approaches the speed of light, the effect becomes prominent.

  8. Lorentz factor - Wikipedia

    en.wikipedia.org/wiki/Lorentz_factor

    Its initial value is 1 (when v = 0); and as velocity approaches the speed of light (v → c) γ increases without bound (γ → ∞). α (Lorentz factor inverse) as a function of velocity—a circular arc. In the table below, the left-hand column shows speeds as different fractions of the speed of light (i.e. in units of c). The middle column ...

  9. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    In optics, one usually knows the refractive index n of the medium, which is the ratio of the speed of light in vacuum (c) to the speed of light in the medium. In the analysis of partial reflection and transmission, one is also interested in the electromagnetic wave impedance Z , which is the ratio of the amplitude of E to the amplitude of H .