Search results
Results from the WOW.Com Content Network
Like any series, an alternating series is a convergent series if and only if the sequence of partial sums of the series converges to a limit. The alternating series test guarantees that an alternating series is convergent if the terms a n converge to 0 monotonically, but this condition is not necessary for convergence.
In mathematical analysis, the alternating series test is the method used to show that an alternating series is convergent when its terms (1) decrease in absolute value, and (2) approach zero in the limit.
If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]
In mathematics, the Riemann series theorem, also called the Riemann rearrangement theorem, named after 19th-century German mathematician Bernhard Riemann, says that if an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number, and rearranged such that the new series diverges.
Suppose that we have two series and with , > for all . Then if lim n → ∞ a n b n = c {\displaystyle \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=c} with 0 < c < ∞ {\displaystyle 0<c<\infty } , then either both series converge or both series diverge.
Furthermore, if Σa n is divergent, a second divergent series Σb n can be found which diverges more slowly: i.e., it has the property that lim n->∞ (b n /a n) = 0. Convergence tests essentially use the comparison test on some particular family of a n, and fail for sequences which converge or diverge more slowly.
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.
When testing if a series converges or diverges, this test is often checked first due to its ease of use. In the case of p-adic analysis the term test is a necessary and sufficient condition for convergence due to the non-Archimedean ultrametric triangle inequality .