Search results
Results from the WOW.Com Content Network
A statistical significance test starts with a random sample from a population. If the sample data are consistent with the null hypothesis, then you do not reject the null hypothesis; if the sample data are inconsistent with the null hypothesis, then you reject the null hypothesis and conclude that the alternative hypothesis is true. [3]
Statistical inference is the process of drawing conclusions from data that are subject to random variation, for example, observational errors or sampling variation. [8] Initial requirements of such a system of procedures for inference and induction are that the system should produce reasonable answers when applied to well-defined situations and ...
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
The hypothesis of Andreas Cellarius, showing the planetary motions in eccentric and epicyclical orbits. A hypothesis (pl.: hypotheses) is a proposed explanation for a phenomenon. A scientific hypothesis must be based on observations and make a testable and reproducible prediction about reality, in a process beginning with an educated guess or ...
Whether it is justifiable to reject a hypothesis based on a low probability without knowing the probability of an alternative; Whether a hypothesis could ever be accepted based solely on data In mathematics, deduction proves, while counter-examples disprove. In the Popperian philosophy of science, progress is made when theories are disproven.
In statistics education, informal inferential reasoning (also called informal inference) refers to the process of making a generalization based on data (samples) about a wider universe (population/process) while taking into account uncertainty without using the formal statistical procedure or methods (e.g. P-values, t-test, hypothesis testing, significance test).
To use a sample as a guide to an entire population, it is important that it truly represents the overall population. Representative sampling assures that inferences and conclusions can safely extend from the sample to the population as a whole. A major problem lies in determining the extent that the sample chosen is actually representative.
Statistical conclusion validity is the degree to which conclusions about the relationship among variables based on the data are correct or "reasonable". This began as being solely about whether the statistical conclusion about the relationship of the variables was correct, but now there is a movement towards moving to "reasonable" conclusions that use: quantitative, statistical, and ...