enow.com Web Search

  1. Ads

    related to: modular arithmetic identities examples worksheet with solutions 1 and 7
  2. education.com has been visited by 100K+ users in the past month

    • Lesson Plans

      Engage your students with our

      detailed lesson plans for K-8.

    • 20,000+ Worksheets

      Browse by grade or topic to find

      the perfect printable worksheet.

    • Worksheet Generator

      Use our worksheet generator to make

      your own personalized puzzles.

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

Search results

  1. Results from the WOW.Com Content Network
  2. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.

  3. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    In modular arithmetic, the integers coprime (relatively prime) to n from the set {,, …,} of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n.

  4. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  5. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    As another example, consider the product 7 ⋅ 15 mod 17 but with R = 10. Using the extended Euclidean algorithm, compute −5 ⋅ 10 + 3 ⋅ 17 = 1, so N′ will be −3 mod 10 = 7. The Montgomery forms of 7 and 15 are 70 mod 17 = 2 and 150 mod 17 = 14, respectively.

  6. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    For example, a group is an algebraic object consisting of a set together with a single binary operation, satisfying certain axioms. If G {\displaystyle G} is a group with operation ∗ {\displaystyle \ast } , a congruence relation on G {\displaystyle G} is an equivalence relation ≡ {\displaystyle \equiv } on the elements of G {\displaystyle G ...

  7. Category:Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Category:Modular_arithmetic

    In mathematics, modular arithmetic is a system of arithmetic for certain equivalence classes of integers, called congruence classes. Sometimes it is suggestively called 'clock arithmetic', where numbers 'wrap around' after they reach a certain value (the modulus). For example, when the modulus is 12, then any two numbers that leave the same ...

  1. Ads

    related to: modular arithmetic identities examples worksheet with solutions 1 and 7